Linear algebra:
ODE:
PDE:
Numerical analysis:
Optimisation: Boyd, S. & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press. URL https://www.stanford.edu/~boyd/cvxbook/
Elementary probability: Ross, S. M. (2014). A First Course in Probability (9th edition). Pearson.
Elementary stochastic processes:
Probability theory: Ross, S. M. (2014). Introduction to Probability Models (11th edition). Academic Press.
Stochastic calculus: Øksendal, B. (2003). Stochastic Differential Equations (6th edition). Universitext. Springer, Berlin, Heidelberg.
Measure-theoretic probability theory: Chung, K. L. (2000). A Course in Probability Theory (2nd edition). Academic Press.
B. Statistics:
Elementary statistics:
Linear models: Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied Linear Statistical Models (Vol. 4). Chicago: Irwin.
Bayesian inference: Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian Data Analysis (Vol. 2). Boca Raton, FL: CRC press.
Generalized Linear Model: Myers, R. H., Montgomery, D. C., Vining G. G., Robinson T. J. (2010). Generalized Linear Models: with Applications in Engineering and the Sciences (2nd Edition). Wiley.
Multilevel models:
Multivariate:
Study design:
Time series: Tsay, R. S. (2010). Analysis of Financial Time Series (3rd edition). Wiley.
Categorical data analysis: Agresti, A. (2007). An Introduction to Categorical Data Analysis (2nd Edition), Wiley Series in Probability and Statistics. Wiley.
Bootstrap: Efron, B. & Tibshirani, R. (1994). An Introduction to the Bootstrap. Chapman and Hall/CRC.
Statistical inference: Casella, G. & Berger, R. L. (2001). Statistical Inference (2nd Edition). Duxbury Press.
Statistical learning: Hastie, T., Tibshirani, R. & Friedman J. (2016). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd Edition), Springer Series in Statistics. Springer.
C. Computer Science:
Basic programming:
Information retrieval:
Computational phylogenetics:
Machine learning: Bishop, C. M. (2011). Pattern Recognition and Machine Learning. Springer.
Deep learning: Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning. The MIT Press.
https://lihkg.com/thread/518547/page/1
Post 51:
https://lihkg.com/thread/522945/page/1
Post 52:
https://lihkg.com/thread/529657/page/1
Post 53:
https://lihkg.com/thread/536441/page/1
Post 54:
https://lihkg.com/thread/543118/page/1
Post 55:
https://lihkg.com/thread/551953/page/1
Post 56:
https://lihkg.com/thread/564378/page/1
Post 57:
https://lihkg.com/thread/568592/page/1
Post 58:
https://lihkg.com/thread/576301/page/1
Post 59:
https://lihkg.com/thread/584192/page/1
Post 60:
https://lihkg.com/thread/593087/page/1
Post 61:
https://lihkg.com/thread/602973/page/1
Post 62:
https://lihkg.com/thread/623314/page/1
Post 63:
https://lihkg.com/thread/638490/page/1
Post 64:
https://lihkg.com/thread/648561/page/1
Post 65:
https://lihkg.com/thread/655871/page/1
Post 66:
https://lihkg.com/thread/662843/page/1
Post 67:
https://lihkg.com/thread/670032/page/1
Post 68:
https://lihkg.com/thread/686064/page/1
Post 69:
https://lihkg.com/thread/713426/page/1
另外有興趣想留自己Research Info既巴絲, 希望可以搵到同field既巴打傾下計或者睇下有無potential collaboration, 可以係下面個google doc填自己既資料(optional)
https://docs.google.com/spreadsheets/d/1VAW9av9mt3RnUiYU7t8NhV73P7hc5mTZc1rRccket00/edit?usp=sharing
如果你想分享下報pg經驗,或者知多啲關於報pg嘅嘢,可以入去呢個word:
https://docs.google.com/document/d/1-6RuzKFOdboyqvHGpUcDhZpLz833E2m8jEi3FJfnUCI/edit
有興趣係academic 發展,做research既巴絲入黎傾下啦