Ads
留名學野
但係我想問如果我想睇Measure Theory嘅textbook應該睇邊本
利申:Engineering fm
有咩數學background同想咩方向? E.g. probability, pure math, applied math, statistics, etc.
Calculus+Prob and stat都有讀過
本來想讀Pure Maths 但係間u得Applied Maths :^(
應該向住applied maths方向讀
:^(
呢本應該可以, 會有埋 probability 的應用
留名學野
但係我想問如果我想睇Measure Theory嘅textbook應該睇邊本
利申:Engineering fm
有咩數學background同想咩方向? E.g. probability, pure math, applied math, statistics, etc.
Calculus+Prob and stat都有讀過
本來想讀Pure Maths 但係間u得Applied Maths :^(
應該向住applied maths方向讀
:^(
呢本應該可以, 會有埋 probability 的應用
依家見到黃色封面嘅書就會勾起GTM嘅陰影 :^(
多謝你比其它field既人了解依門學科 :^(
有個問題想問下, 之前同人討論0.99..等唔等於1,我話0.99..=1係因為real number既definition 係用limit 黎define, 但起rational number 既definition入面每個數都有唯一既質因解,咁9/10+9/100+9/1000+...依個數加幾多都好,分子分母都cancel唔到,除非用limit 去define但又為反rational number 既definition...
其實無違反, 0.999...係一個geometric sum, 可以用 DSE level 直接計
geometric sum to infinity 唔係一個 limit 嚟咩
如果要好concise咁講我諗要特登寫返個post 講 :^(
我叫 Edelschwarz講下, 同佢果個post關係大D :^(
多謝你比其它field既人了解依門學科 :^(
有個問題想問下, 之前同人討論0.99..等唔等於1,我話0.99..=1係因為real number既definition 係用limit 黎define, 但起rational number 既definition入面每個數都有唯一既質因解,咁9/10+9/100+9/1000+...依個數加幾多都好,分子分母都cancel唔到,除非用limit 去define但又為反rational number 既definition...
其實無違反, 0.999...係一個geometric sum, 可以用 DSE level 直接計
geometric sum to infinity 唔係一個 limit 嚟咩
如果要好concise咁講我諗要特登寫返個post 講 :^(
我叫 Edelschwarz講下, 同佢果個post關係大D :^(
infinite sum of rational number 唔一定係rational
咁啱呢個example係啫
所以in general呢個唔係喺rational number入面處理到嘅事
Theorem 1. 如果 s 係 simple function, 咁 for any a ∈ ℝ,is measurable. :^(
Definition. 如果係一個function, 而且 f 係一個sequence of simple function 的pointwise limit的話, 我地就會話 "f is measurable" (or "f is a measurable function"). :^(
Theorem 2. (a) 如果係一個function, "f is measurable" ⇔ "for any a ∈ ℝ, :^(is measurable" :^(
(b) 如果 f: X -> [0, ∞] 係一個 non-negative measurable function的話, 我地可以搵到一個 increasing sequence of simple function {s_n} (即係 s_n (x) ≤ s_{n+1} (x) for all x ∈ X, n ∈ ℕ ) 令 {s_n} converges to f pointwisely
Ads
你highlight曬,搞到我唔知點樣highlight黎問野 :^(
改番d 顏色 :^(
sorry 下次highlight 少d野
(a) A Property of Simple Functions.
提番 Simple Function 係D咁的樣的野
:^(
where A_i are measurable sets. 我地可以好似interval個case咁 assume d A_i mutually disjoint, 不過個證明簡單好多, 因爲堆 measurable sets 係一個 σ-algebra, 所以個observation可以唔理 (Proof: Exercise.) :^(
然後, 由於呢個sum 得FINITE咁多個"term", 我地可以 relabel 過 d A_i 同好似上面咁重組d measurable sets, 令到 c_1 < c_2 < ... < c_n., 而因爲左以下的formula, 我地assume 全部 A_i 的 union 係成個世界 X. (原本堆 A_i union 唔係X咪格硬加個 0 落去 lor) :^(
然後就有好神奇的野出現啦:
:^( :^(
你或者會問, 點解D會用 Theorem 2 右邊果句做定義, 呢句野好似好無厘頭喎 :^(
f(x) > c
⇔ 存在某個 N ∈ ℕ, 令到 s_n (x) > a for all n ≥ N.
⇔ 存在某個 N ∈ ℕ, 令到for all n ≥ N. :^(
⇔ 存在某個 N ∈ ℕ, 令到 :^(
⇔ :^(
先證 non-negative function係岩, 然後因爲任何 function 都可以切成咁: f(x) = f+(x) - f-(x), where f+(x) = max{f(x), 0}, f-(x) = max{-f(x), 0} (簡單黎講 f+ 係 f positive的部份, f- 係 f negative 的部份), 所以所有 function 都岩
Q.E.D.
Q1. 如果A_i唔係mutually disjoint, 我地就可以用前面E_i 變F_i 既方法將佢地變做mutually disjoint,而由於A_i係sigma algebra,所以變出黎個d都會係measurable set ?
Q2. 唔多明呢到,點解可以assume 全部A_i的union係X,「格硬加個0落去」 又係咩意思?
Q3. 我再諗下點解先 :^(
Q4. 「Theorem 2 右邊果句」係咩意思?你意思係Theorem 2(a)?
Q1. 如果A_i唔係mutually disjoint, 我地就可以用前面E_i 變F_i 既方法將佢地變做mutually disjoint,而由於A_i係sigma algebra,所以變出黎個d都會係measurable set ?
Q2. 唔多明呢到,點解可以assume 全部A_i的union係X,「格硬加個0落去」 又係咩意思?
Q3. 我再諗下點解先 :^(
Q4. 「Theorem 2 右邊果句」係咩意思?你意思係Theorem 2(a)?
Q1. Yes
Q2. 例如係ℝ, 我地有 :^(
實際上我地可以寫做 :^(
Q3. Hint: 個set轉變的位係exactly 果D c_n, 而我係上次講過D c_n點排
Q4. yes, typo
Q1. 如果A_i唔係mutually disjoint, 我地就可以用前面E_i 變F_i 既方法將佢地變做mutually disjoint,而由於A_i係sigma algebra,所以變出黎個d都會係measurable set ?
Q2. 唔多明呢到,點解可以assume 全部A_i的union係X,「格硬加個0落去」 又係咩意思?
Q3. 我再諗下點解先 :^(
Q4. 「Theorem 2 右邊果句」係咩意思?你意思係Theorem 2(a)?
Q1. Yes
Q2. 例如係ℝ, 我地有 :^(
實際上我地可以寫做 :^(
Q3. Hint: 個set轉變的位係exactly 果D c_n, 而我係上次講過D c_n點排
Q4. yes, typo
Q2 明了
Q3 都明了,之前諗得複雜咗
至於appendix個proof...得閒先睇 :^(
(i) 先假設 f measurable, 即係, s_n simple functions. 利用 limit of sequence 的定義 (ε = (f(x) - a) / 2 > 0), :^(
[/qoute]
呢到即係話f(x) > 2a?點解?
[quote]f(x) > c
⇔ 存在某個 N ∈ ℕ, 令到 s_n (x) > a for all n ≥ N.
(i) 先假設 f measurable, 即係, s_n simple functions. 利用 limit of sequence 的定義 (ε = (f(x) - a) / 2 > 0), :^(
[/qoute]
呢到即係話f(x) > 2a?點解?
[quote]
f(x) > c
⇔ 存在某個 N ∈ ℕ, 令到 s_n (x) > a for all n ≥ N.
(i) 先假設 f measurable, 即係, s_n simple functions. 利用 limit of sequence 的定義 (ε = (f(x) - a) / 2 > 0), :^(
f(x) > c
⇔ 存在某個 N ∈ ℕ, 令到 s_n (x) > a for all n ≥ N.
留名學野
但係我想問如果我想睇Measure Theory嘅textbook應該睇邊本
利申:Engineering fm
有咩數學background同想咩方向? E.g. probability, pure math, applied math, statistics, etc.
Calculus+Prob and stat都有讀過
本來想讀Pure Maths 但係間u得Applied Maths :^(
應該向住applied maths方向讀
:^(
呢本應該可以, 會有埋 probability 的應用
Ads
留名學野
但係我想問如果我想睇Measure Theory嘅textbook應該睇邊本
利申:Engineering fm
有咩數學background同想咩方向? E.g. probability, pure math, applied math, statistics, etc.
Calculus+Prob and stat都有讀過
本來想讀Pure Maths 但係間u得Applied Maths :^(
應該向住applied maths方向讀
:^(
呢本應該可以, 會有埋 probability 的應用
感謝巴打 完SEM之後睇下先 :^(
(i) 先假設 f measurable, 即係, s_n simple functions. 利用 limit of sequence 的定義 (ε = (f(x) - a) / 2 > 0), :^(
呢到即係話f(x) > 2a?點解?
f(x) > c
⇔ 存在某個 N ∈ ℕ, 令到 s_n (x) > a for all n ≥ N.
呢兩句都唔明
(i) 先假設 f measurable, 即係, s_n simple functions. 利用 limit of sequence 的定義 (ε = (f(x) - a) / 2 > 0), :^(
呢到即係話f(x) > 2a?點解?
f(x) > c
⇔ 存在某個 N ∈ ℕ, 令到 s_n (x) > a for all n ≥ N.
呢兩句都唔明
你計錯數
1. By definition of limit of sequence, there exists N such that
|s_n (x) - f(x)| < (f(x) - a) / 2 for all n ≥ N
拆absolute value 再移項得到
a < (f(x) + a) /2 < s_n (x) < something we dont care for all n ≥ N
(i) 先假設 f measurable, 即係, s_n simple functions. 利用 limit of sequence 的定義 (ε = (f(x) - a) / 2 > 0), :^(
呢到即係話f(x) > 2a?點解?
f(x) > c
⇔ 存在某個 N ∈ ℕ, 令到 s_n (x) > a for all n ≥ N.
呢兩句都唔明
你計錯數
1. By definition of limit of sequence, there exists N such that
|s_n (x) - f(x)| < (f(x) - a) / 2 for all n ≥ N
拆absolute value 再移項得到
a < (f(x) + a) /2 < s_n (x) < something we dont care for all n ≥ N
2. Typo, 應該係 f(x) > a
呢本應該可以, 會有埋 probability 的應用