LIHKG [數學普及] Measure Theory (測度論) 簡介 ver. 2
喜歡化學 2018-1-1 16:39:36 我覺得識當時可以少少technical, 比人知道 technical 究竟咩一回事,真係睇書果時冇咁易嚇親

Ads

Elias 2018-1-1 16:42:07 而家係太technical, 想減少d technical的內容, 但係咁家咁洗濕左個頭好麻煩 *facepalm*
同埋連登講數真係好唔方便, 格式又難搞, 所以整緊個blog
Elias 2018-1-1 16:53:03 s(x) 最多有 n 個 value (assume A_i disjoint), 所以係散開唔會連續的
X 的 power set 係指 X 的所有 subset
s^{-1} (A) 只係 X 的一個subset, 所以係 power set of X 入面的一粒element only.
Elias 2018-1-1 16:58:03 oh i get what you mean

s^{-1} (A) 係講緊有咩point in the domain of s 會比 s map左落A度, 所以就算 A 有D 點根本唔會有 domain 的野map落去都無所謂, 當果D點隱形就Ok

e.g. f: {1, 2} -> {3, 4, 5} defined by
f(1) = 3
f(2) = 4

我地依然可以講 f^{-1} ({4, 5}) = {2}, 當個 5 隱形就可以
Elias 2018-1-1 17:21:49 s( A_1 U A_2) = {c_1, c_2}

如果括號入面果舊野係set, 例如s(A), A係set, 唔係number, 係指緊A 入面ge野會map左去咩set度,即係將所有 s(x) 收集起,而d x係a入面ge點
君王 2018-1-7 13:31:30 呢d都普及
:^(
不如講下hairy ball theory,Banach–Tarski paradox仲多人有性趣啦....
Elias 2018-1-7 13:35:39 riemann hypothesis好似正D喎可
:^(
君王 2018-1-7 13:42:06 呢個點都好過measure theory
君王 2018-1-7 13:43:18 七大問題部分都普及既....
Elias 2018-1-7 13:50:51 當我想個post沉的時候你同我推番出黎
:^(

Ads

君王 2018-1-7 13:51:46 sorry lor 見到有人quote呢個post
笑騎騎•放毒蛇 2018-1-7 14:01:25 唔推囉
:^(
忒修斯之船 2018-1-7 14:49:07 edelschwarz
:^(
:^(
Edelschwarz 2018-1-7 14:59:17 (笑)
Elias 2018-1-7 15:06:50
:^(
笑騎騎•放毒蛇 2018-1-9 14:17:55
:^(
RicKula 2018-1-10 17:19:40 辛苦師兄, 不過呢個post冇講topology, 好難教得好measure theory, 就算只係Lebesgue integration.
Elias 2018-1-10 17:28:04 其實唔講得深入的話,唔需要topology
:^(

E.g. Radon measure, Riesz representation theorem, 呢d要識太多野
RicKula 2018-1-10 17:44:55 關於Measure theory定Lebesgue integration, 小弟個人睇法係點都要go through Borel-Sigma-algebra, 至少到 R^n cas
RicKula 2018-1-10 17:48:51 師兄, 冇呢條Theorem, Riemann integrable function on unbounded interval is not necessarily Lebesgue integrable. (我記得做𡃁仔讀書時, Rudin本書有題exercise 係咁)

In other words, Lebesgue integration does not completely generalize Riemann integration.

Ads

狐狸叔叔 2018-1-10 18:08:56 riemann integral個definition好似唔包improper integral?
RicKula 2018-1-10 18:16:58 師兄你啱, 係當extend Riemann integral去unbounded interval時先fail. 抱歉年代久遠記錯Rudin exercise嗰題嘅意思.

https://math.stackexchange.com/questions/2293902/functions-that-are-riemann-integrable-but-not-lebesgue-integrable/2293956
Elias 2018-1-10 22:07:06 Btw 其實 lebesgue measure 係 riemann integral ge riesz measure
:^(
RicKula 2018-1-10 23:14:33 Yes, 所以我先問師兄不如講得general d, 咁去Riesz representation theorem 明時個效果先更fruitful, 因為Riemann 同 Lebesgue 嘅關係都只係Riesz嘅corollary, 要了解個big picture點都要d basic topology.

尤其個 1-1 correspondence between states on C_C(X) and regular Borel probability measures on X 直落 functional analysis, C*-algebra, 同quantum information theory 都係好 influential 嘅 results.
:^(