Elias
2018-1-1 16:53:03
s(x) 最多有 n 個 value (assume A_i disjoint), 所以係散開唔會連續的
X 的 power set 係指 X 的所有 subset
s^{-1} (A) 只係 X 的一個subset, 所以係 power set of X 入面的一粒element only.
Elias
2018-1-1 16:58:03
oh i get what you mean
s^{-1} (A) 係講緊有咩point in the domain of s 會比 s map左落A度, 所以就算 A 有D 點根本唔會有 domain 的野map落去都無所謂, 當果D點隱形就Ok
e.g. f: {1, 2} -> {3, 4, 5} defined by
f(1) = 3
f(2) = 4
我地依然可以講 f^{-1} ({4, 5}) = {2}, 當個 5 隱形就可以
Elias
2018-1-1 17:21:49
s( A_1 U A_2) = {c_1, c_2}
E.g. Radon measure, Riesz representation theorem, 呢d要識太多野
RicKula
2018-1-10 17:44:55
關於Measure theory定Lebesgue integration, 小弟個人睇法係點都要go through Borel-Sigma-algebra, 至少到 R^n cas
RicKula
2018-1-10 17:48:51
師兄, 冇呢條Theorem, Riemann integrable function on unbounded interval is not necessarily Lebesgue integrable. (我記得做𡃁仔讀書時, Rudin本書有題exercise 係咁)
In other words, Lebesgue integration does not completely generalize Riemann integration.
尤其個 1-1 correspondence between states on C_C(X) and regular Borel probability measures on X 直落 functional analysis, C*-algebra, 同quantum information theory 都係好 influential 嘅 results.