LIHKG [腦力大挑戰] Mathematical analysis BB班
會考都無C 2017-12-14 11:07:04
媽 好深呀
:^(

analysis好恐怖架, 唔好讀math major呀
:^(

但係唔想鳩背project present essay lab嘅話仲有咩科可以揀
:^(

stat?

印象中係鳩背為主
利申:淨係講過year one intro courses

Ads

忒修斯之船 2017-12-14 11:22:20
媽 好深呀
:^(

analysis好恐怖架, 唔好讀math major呀
:^(

但係唔想鳩背project present essay lab嘅話仲有咩科可以揀
:^(

stat?

印象中係鳩背為主
利申:淨係講過year one intro courses

stat背書少過 maths n 倍,堆 theorem無咁重要嘅 regularity condition又唔珗點記,大 theorem嘅 proof又唔考
:^(
:^(
Elias 2017-12-14 11:57:59 邊6個負評
:^(
九把罐頭刀 2017-12-14 21:32:49
好想做mature student入番去讀數
(啲中學師弟以為我當年走左去讀數,點鳩知係完全唔關事既科
:^(

LM學野

想去就去啦,有啲野now or never, 中大msc好似二月截止,十萬蚊興趣班黎姐,人地鐘意煮野食去報藍帶要百鳩幾萬,相對之下唔貴喇
:^(
有啲人都係做左幾年唔關事既野走去讀,樓主寫既野好適合讀之前掂下先
:^(
高等微積分 2017-12-14 21:41:10
數學無涯 回頭是岸
:^(

:^(


:^(
淚流某個海洋 2017-12-14 22:03:26 Lm
鬼丸國綱 2017-12-14 22:13:47 岩岩讀完topology 留名
:^(
:^(
Edelschwarz 2017-12-14 23:27:00
岩岩讀完topology 留名
:^(
:^(

讀完topology唔使睇呢個喇掛...
Elias 2017-12-14 23:54:21
數學無涯 回頭是岸
:^(

:^(


:^(

:^(
杯酒對月 2017-12-15 01:23:27 聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁
:^(
:^(
:^(
Elias 2017-12-15 01:29:31
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁
:^(
:^(
:^(

By definition, -1 is additive inverse of 1, by definition, 1 - 1 = 1 + (-1) = 0
:^(

Ads

會考都無C 2017-12-15 09:56:40
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁
:^(
:^(
:^(

By definition, -1 is additive inverse of 1, by definition, 1 - 1 = 1 + (-1) = 0
:^(

:^(
Elias 2017-12-15 10:16:13
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁
:^(
:^(
:^(

By definition, -1 is additive inverse of 1, by definition, 1 - 1 = 1 + (-1) = 0
:^(

:^(

乜野
:^(
日向葵海(主唱) 2017-12-15 10:25:20
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁
:^(
:^(
:^(

中學
:^(
Edelschwarz 2017-12-15 18:36:23 pish
:^(
Elias 2017-12-15 22:07:33
1+1=2係咪冇得prove
:^(

因為哩個係axiom
:^(
?

2的定義係1+1
狐狸叔叔 2017-12-16 00:01:36
1+1=2係咪冇得prove
:^(

因為哩個係axiom
:^(
?

2的定義係1+1

first we have zero 0 and succ function
definition of 1: succ(0)
definition of 2: succ(1)=succ(succ(0))
addition is define recursively by:
a + 0 = a
a + succ(b) = succ(a+b)
Then , 1+1=1+succ(0)=succ(1+0)=succ(1)=2
永遠懷念版主 2017-12-16 01:20:17
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁
:^(
:^(
:^(

中學
:^(

聽category講話所有野都有一個相對既自己,同自己相加會變「零」,另一個同自己相乘會變「一」
利申 睇完wiki完全唔知佢講咩
:^(
:^(
Elias 2017-12-16 01:47:16
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁
:^(
:^(
:^(

中學
:^(

聽category講話所有野都有一個相對既自己,同自己相加會變「零」,另一個同自己相乘會變「一」
利申 睇完wiki完全唔知佢講咩
:^(
:^(

Category 只係一堆 abstract nonsense

Ads

Edelschwarz 2017-12-16 02:40:21
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁
:^(
:^(
:^(

中學
:^(

聽category講話所有野都有一個相對既自己,同自己相加會變「零」,另一個同自己相乘會變「一」
利申 睇完wiki完全唔知佢講咩
:^(
:^(

Category 只係一堆 abstract nonsense

呢個問題用唔著Cat theory掛...
膠米 2017-12-16 03:20:15 我有fd 都讀緊
Edelschwarz 2017-12-16 11:16:00 跟住落嚟要講嘅,可能係最多讀analysis嘅同學中過嘅伏...

大家讀緊幼稚園嘅時候,老師都會話你知,加法嘅順序係唔影響結果嘅
即係1+2+3+4係10, 咁3+1+4+2都係10
:^(


咁當我地有一條sequence {an}, 如果我地用唔同順序去加曬啲數:
:^(

咁根據幼稚園小朋友嘅知識,佢地加埋一定一樣啦

咁我地不如就屎忽痕驗證吓:
:^(

呢度S1就係上個post最尾嗰個example
而S2同S1嘅分別就係我地每加兩個term先減一個term

咁我地計吓佢地頭n個term嘅partial sum:
:^(

咁我地見到S1似乎趨向~0.6931
而S2就趨向~1.0397
補充資料: S1 = ln 2, S2 = 3(ln 2)/2

問題嚟喇,點解佢地唔同嘅
:^(

唔通幼稚園嘅真理係唔適用於series?
如果幼稚園方法都行得通,
咁讀幼稚園得啦,唔使讀大學啦


為咗要解決呢個數學危機,我地需要一啲新工具:
:^(

absolutely convergent嘅意思即係就算我地加曬啲absolute value都唔會爆炸
會爆炸嗰啲就係conditionally convergent

例子:
2-series係absolutely convergent(因為所有term都係正數,攞唔攞absolute value都冇分別)
而上面嘅S1就係conditionally convergent(攞absolute value就變咗會爆炸嘅Harmonic series)

咁呢兩種series有咩分別呢
:^(

答案就係喺幼稚園教落嘅定律行唔行得通
:^(


如果個series係absolutely convergent, 咁我地用咩順序加啲terms都殊途同歸:
:^(


假設{an} converge去A,同埋係absolutely convergent
咁對於是但一個ϵ,我地都搵到一個N,使到當n, q≥N時,
:^(

(sn繼續代表partial sum)

依家考慮另一個排列{bn},同佢嘅partial sum {tn}
咁我地一定會搵到一個M,令{an}嘅頭N個term都裝喺{bn}嘅頭M個term入面 (因為N係有限數,我地逐個逐個term執返就得)

咁當m≥M時,tm比起sN就多咗一堆喺aN之後嘅term,而根據我地嘅假設,呢堆多咗出嚟嘅term加埋係細過ϵ
:^(


跟住就可以揮動我地嘅寶劍(aka triangle inequality)
:^(

所以{tn}都係converge去A

搞掂
:^(


如果你說服唔到自己點解<ϵ同<2ϵ係一樣,可以諗吓change of variable,將2ϵ變成ϵ
:^(


如果個series係conditionally convergent嘅話,調亂啲順序又會點呢
:^(


畀啲空間你地估吓

...

...

...

...

...

我地可以透過調亂啲順序,令佢converge去任何一個實數,仲可以令佢diverge去+/- ∞
:^(


要證明呢樣野,只要搵到相應嘅rearrangement就得囉
係咪好簡單先

我地首先要留意一樣野,就係conditionally convergent series入面嘅正數加埋會diverge, 同樣地負數加埋都會diverge
諗吓點解?

於是我地就可以將條sequence分做兩個subsequences
{cn}裝住≥0嘅term
{dn}裝住<0嘅term
咁大家要記得呢兩個series都係divergent嘅,但係{cn}同{dn}都趨向0 (唔係嘅話{an}唔會converge)

所以對於任何實數r
如果之前嘅term加埋係細過r, 咁我地就擺多一個喺ck落去
如果之前嘅term加埋係大過r, 咁我地就擺多一個喺dk落去
咁得出嚟嘅partial sum就會喺r附近徘徊
而因為{cn}同{dn}都趨向0, 所以呢個series係會converge去r嘅
Exercise: Prove this
:^(


至於diverge去+/- ∞就仲簡單
因為{cn},{dn}都係divergent嘅,所以對於任何 m, n, 我地都搵到一個p,使到
:^(


咁只要我地塞足夠多嘅ck喺兩個dk中間
:^(

我地就可以令佢diverge to +∞
同樣地,我地可以塞足夠多嘅dk喺兩個ck中間,令佢diverge to -∞

搞掂
:^(


下回預告: 會見到ε, δ呢兩個字母
:^(
Elias 2017-12-16 11:21:19
:^(
:^(
:^(