LIHKG [腦力大挑戰] Mathematical analysis BB班
Elias 2017-12-5 00:56:33

Physics嗰啲無睇唔評論

-1/12嗰條講啲唔講啲我覺得好反感
佢好似係講緊啲唔知乜鬼特別summability/summation (我無學)
但又無清楚講明
結果一個正常學過convergence嘅觀眾會覺得佢哋喺度唔知做乜鳩

:^(

無學過真心唔知
:^(

佢將啲divergent series搞嚟搞去呢種做法我接受唔到
:^(
:^(
:^(

通常話assume converge再搞一大輪係比局外人睇
summability 呢個概念好似係d 咩special functions, harmonic analysis 有用
例如 sum (-1)^n "=" 0 實質上係想講 lim sum_N [(-1)^n]/n = 0
好似仲有一門野係專搞呢D divergent series 比D summability 的意義比佢地, 不過我唔太清楚詳細係點
:^(

等睇呢個post啲數撚出手
:^(

sum (-1)^n 唔係-1/2咩 by consdering Cesàro summation
:^(

雞同鴨講
Cesaro sum 係average of partial sum
我講緊係average of terms
:^(

兩種唔同的意義 ~
所以要講清楚個interpretation係乜

乜鳩嚟
:^(

我淨係聽過analytic continuation
:^(

讀fourier 應該開頭會聽過 cesaro mean, 即係堆partial sum ge mean
Sigma_n = sum s_i / n
Cesaro summable 即係 lim Sigma_n exists and finite
咁樣有好多divergent series 都被賦予意義

Ads

林太史 2017-12-5 14:14:48 依家發現其實物理學入面係冇咩真正意義上既infinite series
物理學既fourier 絕大部分都係continuous
Taylor series 通常淨係攞頭一兩個term
QFT 既perturbations 多數都係asymptotic ,開頭好似converge,實際就diverge
Edelschwarz 2017-12-6 11:03:51 咁多位我返嚟喇
:^(


喺繼續講theorem之前,我地要介紹吓一種好乖嘅sequence先
:^(

佢個名就叫單調數列(monotone sequence)
咁monotone sequence就分兩種嘅
- increasing: 數列入面每一個term都不小於前一個term
- decreasing: 數列入面每一個term都不大於前一個term
如果數列每一個term都大過前一個term,我地叫佢做strictly increasing;
咁大家應該知咩係strictly decreasing
:^(


點解話佢地好乖呢?因為佢地只可以向一個方向行,冇得彈入又彈出,所以佢地好容易就converge到喇

有幾容易? Monotone convergence theorem答到你:
:^(


大家可以想像吓,啲點只可以向一個方向行,但又唔畀過界,咁會converge都係好自然嘅事
:^(


雖然睇落好似好有道理,但係我地都係要證一次先安樂
:^(


我地依家假設{an}係increasing, bounded above
咁completeness axiom話畀我地聽sup{an}存在
:^(

叫住佢做L先
咁因為L係最細嘅upper bound,所以無論ϵ>0幾細,L-ϵ都唔係一個upper bound, 即係有一個ak>L-ϵ
但係我地知道{an}係increasing,所以ak之後嘅term都夾喺L-ϵ同L之間
所以{an}就converge去L喇
第二part可以用同一個方法證,所以too long didn't write
Edelschwarz 2017-12-6 11:04:03 講完monotone sequence,我地就講吓subsequence啦
讀過analysis嘅巴打一定知我想講咩theorem

當我地有一條數列{an},咁我地就可以從中抽一啲term出嚟,喺唔重複唔打亂次序嘅情況下造出另一條數列
咁呢條新數列就叫做{an}嘅子數列(subsequence)

例如當{an}=n嘅時候
1,3,5,7,9,... 係{an}嘅subsequence
1,4,9,16,... 都係
但 1,1,2,3,5,8,13,...唔係{an}嘅subsequence(因為1重複咗)
1,5,3,7,9,..都唔係(因為次序唔啱)

我地通常用{ank}去表示一條subsequence,而nk就係話畀我地知要攞原本條sequence係幾個term
{ank}個k應該要再細隻過n,但因連登formatting所限做唔到,不過我諗唔會令大家混淆嘅

咁我地就有兩個關於subsequence嘅簡單result:
1. 如果{an} converge去L,咁佢所有subsequence都會converge去L
2. 如果{an}有兩條唔同嘅subsequence converge去兩個唔同嘅數,咁{an}就會係divergent
Proof: Exercise
:^(


例子:
{an} = (-1)ⁿ⁺¹ (即係1,-1,1,-1,1,-1,1,-1,1,...)係divergent, 因為我地搵到兩條converge去唔同數嘅subsequence:
{a2n}=1係converge 去1,
但係{a2n+1}=-1係converge 去-1

跟住我地就有一條難少少嘅Lemma
(Lemma通常係指前往我地想證嘅野嘅踏腳石,但唔一定冇乜用)
就係每條sequence都有一條monotone subsequence
:^(


要證明呢個lemma,我地首先要屈啲野出嚟先(所以有少少難)
喺一條sequence {an}入面,如果ak不小於之後嘅term,我地就叫ak做dominant
:^(


咁一條sequence就只有兩個可能性
一係有無限咁多個dominant term,一係得有限多個dominant term
射十二碼一係入一係唔入
如果我地有無限咁多個dominant term, 咁呢啲dominant term就砌成一條decreasing subsequence
相反,如果我地得有限多個dominant term,咁我地就會有一個最後嘅dominant term as
咁an1=as+1就唔係dominant, 即係有一個term an2係大過an1
而an2都唔係dominant,即係有一個term an3係大過an2
如此類推,{ank}就會係一條increasing subsequence
搞掂
:^(


用呢條Lemma,我地就可以證到一條有名嘅定理(雖然我個人覺得佢冇乜用)
:^(

站在巨人的肩膊上,呢條theorem就變得好易證

我地假設{an}係一條bounded sequence
咁上面個Lemma就話我地有一條monotone subsequence (呢樣唔關bounded事)
而monotone convergence theorem就我地知呢條subsequence係converge嘅
搞掂
:^(

用呢句代替QED好似唔錯

下集我地開始講Cauchy呢條仆街仔
:^(
會考都無C 2017-12-6 11:19:56 皮已再正
Elias 2017-12-6 12:00:40 "Proof: Exercise
:^(
"

:^(
:^(
:^(
Elias 2017-12-6 12:04:17
subsequential limit係一樣好有用嘅嘢...

證一個space係complete有時都要靠佢

btw BW-theorem 係重要, 因爲佢明確確立左Cauchy sequence => converges (i.e. R is complete)
而之前所謂的sup/inf property仲未有咁明顯的確立

而證一個space係complete好多時都係抽subsequetial limit
:^(
全寶藍 2017-12-6 12:25:38 留明慢慢睇
會考都無C 2017-12-6 12:31:52
"Proof: Exercise
:^(
"

:^(
:^(
:^(

識嘅人覺得好正常好低B
唔識嘅人就想屌鳩出書嗰個
:^(
227703 2017-12-6 12:32:45 留名

Ads

Elias 2017-12-6 12:37:11
"Proof: Exercise
:^(
"

:^(
:^(
:^(

識嘅人覺得好正常好低B
唔識嘅人就想屌鳩出書嗰個
:^(

:^(


:^(
:^(
:^(
乞食科 2017-12-6 12:44:17 lm
會考都無C 2017-12-6 13:04:00
"Proof: Exercise
:^(
"

:^(
:^(
:^(

識嘅人覺得好正常好低B
唔識嘅人就想屌鳩出書嗰個
:^(

:^(


:^(
:^(
:^(

Jed
:^(
SUV 2017-12-6 13:56:34
:^(
:^(
睇到呢個位已經覺得maths唔係人類的語言,係外星文
會考都無C 2017-12-6 14:05:35
:^(
:^(
睇到呢個位已經覺得maths唔係人類的語言,係外星文

用心去感受一下數學(尤其係analysis)嘅偉大
:^(

你會發現其實唔難
:^(
Elias 2017-12-6 14:11:25
:^(
:^(
睇到呢個位已經覺得maths唔係人類的語言,係外星文

用心去感受一下數學(尤其係analysis)嘅偉大
:^(

你會發現其實唔難
:^(

對比上面幅圖簡直小菜一碟
:^(

同埋first course in analysis只係嚴謹少少的微積分姐
算子代數 2017-12-6 19:32:32
:^(
:^(
睇到呢個位已經覺得maths唔係人類的語言,係外星文

用心去感受一下數學(尤其係analysis)嘅偉大
:^(

你會發現其實唔難
:^(

對比上面幅圖簡直小菜一碟
:^(

同埋first course in analysis只係嚴謹少少的微積分姐

Elementary real analysis其實已經算淺白sosad
Edelschwarz 2017-12-6 20:10:41
subsequential limit係一樣好有用嘅嘢...

證一個space係complete有時都要靠佢

btw BW-theorem 係重要, 因爲佢明確確立左Cauchy sequence => converges (i.e. R is complete)
而之前所謂的sup/inf property仲未有咁明顯的確立

而證一個space係complete好多時都係抽subsequetial limit
:^(

:^(

不過證完呢個之後
你再見到佢都只會係Euclidean space嘅加強版
:^(
Edelschwarz 2017-12-7 07:25:33 如果你喺大學讀數,你會成日見到呢條契弟:
:^(


無錯,呢條友正是Augustin Louis Cauchy
其實唔使入大學,各位A-level嘅同學仔都可能見過佢
Cauchy-Schwarz Inequality

咁佢同我地要講嘅野有咩關係呢?
事緣有一日,佢覺得要證一條sequence係converge要首先搵到佢嘅limit係一件好麻煩嘅事,所以佢就想搵吓有冇啲唔使知道條sequence嘅limit嘅方法

於是佢就諗到下面呢個定義:
:^(

翻譯蒟蒻: A sequence {an} is a Cauchy sequence, if for all ϵ>0, there exists a natural number N, such that |am -an|<ϵ for all m,n≥N.

呢個定義即係話第N個之後嘅term都同其他(第N個之後嘅)term好近

咁有冇例子呢?
:^(

其實,是但一條convergent sequence都係例子,因為我地有下面嘅Theorem:

Theorem: A convergent sequence is a Cauchy sequence.

點解?
如果{an}係一條convergent sequence, 咁佢就會converge去一個數,譬如話L
咁對於是但一個ϵ,我地就會搵到一個N,令到第N個之後嘅term都喺L-ϵ/2同L+ϵ/2之間 (呢度其實我地擺咗ϵ/2落個定義度)
咁我地喺第N個之後嘅term求其揀兩個am,an出嚟
咁因為佢地都喺L-ϵ/2同L+ϵ/2之間
所以佢地嘅差|am -an|就細過(L+ϵ/2)-(L-ϵ/2) = ϵ喇
搞掂
:^(


咁呢個定義有咩用呢?
我地想搵一個唔需要事先知道limit嘅方法去證一條sequence係convergent,所以如果將條theorem調轉(我地叫converse)都啱嘅話就好喇
:^(


好好彩,喺實數R上面,呢條theorem的確可以調轉:

Theorem: A Cauchy sequence {an} is convergent.

喺證明佢之前,我地需要一條Lemma:

Lemma: A Cauchy sequence is bounded.
Proof: Exercise
:^(

提示: 諗吓我地點證明convergent sequence係bounded

跟住Bolzano-Weierstrass theorem(可能係最後一次喺度見到佢)就話{an}有一條subsequence converge去某個L
咁對於是但一個ϵ,我地就會搵到一個K,令到{ank}第K個之後嘅term都係L-ϵ/2同L+ϵ/2之間
而因為{an}係Cauchy sequence,所以我地就會搵到一個N,令到第N個之後嘅term之後任意term嘅差都細過ϵ/2

我地依家老屈個數 s = max{K, N} 出嚟
咁我地就有ns≥N

所以當n≥N嗰陣,我地就有呢條不等式:
|an-L| = |an-ans+ans-L|≤|an-ans|+|ans-L|<ϵ/2+ϵ/2=ϵ

所以an係convergent嘅
搞掂
:^(


所以我地就有以下嘅結論:
:^(


佢有用嘅地方就係我地唔再需要知道sequence嘅limit去證佢convergent

考慮呢條sequence: a1=1, an+1 = an + (-1)ⁿ/(n+1)
咁佢好明顯係Cauchy sequence (因為第n個之後嘅term都係an-1同an之間)
所以佢係convergent,即使其實我地無辦法一眼睇得出佢個limit
(其實佢converge去 ln 2)

但係點解我地要強調我地喺R入面呢?
因為喺其他地方,呢個結論未必啱:
1, 1.4, 1.41, 1.414, 1.4142, ... 呢條sequence喺Q入面都係Cauchy,但喺Q入面佢係唔converge(因為佢converge去sqrt(2), which is 唔喺Q入面)

下回預告: Harmonic series
:^(

Ads

Elias 2017-12-7 07:37:30 不如你寫下點解明顯係Cauchy
:^(
Edelschwarz 2017-12-7 07:45:12
不如你寫下點解明顯係Cauchy
:^(

咪寫咗?
會考都無C 2017-12-7 09:45:43 實有人睇唔明
:^(
Edelschwarz 2017-12-7 09:50:36
實有人睇唔明
:^(

你覺得邊忽會有人唔明
:^(

除咗個example
:^(