Ads
我就研究緊活點解人既decision唔係optimized :^( :^( :^(
heuristics :^( :^(
:^( :^(
我之前都做unconscious mental process :^(
基本上人腦唔是為左optimization而運作 :^(
但係從evolution角度黎講 如果人腦唔係optimize緊咁點樣生存到而家
定係好似tirole/benabou嗰個套咁 一啲suboptimal既behavior反而達致optimal outcome
同意,但同一時間好多optimized 左既responses 會因為社會變左而變得係某d 情況下唔adaptive
巴打有計傾 :^( :^(
有兩種可能
1.constrainted maximization
2. 個environment轉左 mechanism轉唔切
Me research大概圍繞住第一點做 :^(
讀緊game theory,入面有好多simplex optimization,用手計計到頭暈 :^(
Agger 好煩nash bargaining solution :^(
Dynamic programming 已經好好做。
Behavioral econ 有啲咩multi-selves agent, dynamically inconsistent agent, 連dynamic programming 都唔apply,煩到嘔泡。
Nash bargaining 亦都係最簡單,有幾多relationship中的surplus只係按bargaining power分。
本人表示深受其害
X2 :^(
好奇下econ係咪好straight要搵global optimal pt
因為ml好多都係搵local就算
yes, global and unique。
咁都幾係 而家好多ml都係minimize某個functional就算 :^(
因為ML好多係non-convex optimization :^(
但係econ應該都唔多convex?
但上面話Econ搵global and unique optimal point喎
唔strictly convex唔會有global and unique架喎 :^(
個post推慢左 :^(
放左advisor飛機 要補鑊做野 :^(
:^( :^( :^(
前日有個ug放左我飛機, 我屌到佢柒左
:^( :^( :^(
個post推慢左 :^(
放左advisor飛機 要補鑊做野 :^(
:^( :^( :^(
前日有個ug放左我飛機, 我屌到佢柒左
:^( :^( :^(
我趕唔切火車 :^(
下個星期再見佢 唔知會唔會被屌
個post推慢左 :^(
放左advisor飛機 要補鑊做野 :^(
:^( :^( :^(
前日有個ug放左我飛機, 我屌到佢柒左
:^( :^( :^(
Optimization 其實學乜野 :^(
點optimize某objective subject to 唔同constraint (equality or inequality)
幾時有solution, 點計呀etc
深啲既有dynamic optimization, decision making over time etc.
like high school finding local maximum pt/minimum pt
Dynamic programming :^( :^( :^(
讀緊game theory,入面有好多simplex optimization,用手計計到頭暈 :^(
Agger 好煩nash bargaining solution :^(
Dynamic programming 已經好好做。
Behavioral econ 有啲咩multi-selves agent, dynamically inconsistent agent, 連dynamic programming 都唔apply,煩到嘔泡。
Nash bargaining 亦都係最簡單,有幾多relationship中的surplus只係按bargaining power分。
好在我唔係modeling個邊 :^(
optimization其實係好正既topic 我做緊machine learning research
Machine learning入面好多algorithm 都係solve optimization problems
當中會用到好多real analysis同functional analysis既techniques
最正個位係可以自己諗某啲algorithms去solve某一類optimization problems然後paper :^(
Ads
讀緊game theory,入面有好多simplex optimization,用手計計到頭暈 :^(
Agger 好煩nash bargaining solution :^(
Dynamic programming 已經好好做。
Behavioral econ 有啲咩multi-selves agent, dynamically inconsistent agent, 連dynamic programming 都唔apply,煩到嘔泡。
Nash bargaining 亦都係最簡單,有幾多relationship中的surplus只係按bargaining power分。
本人表示深受其害
X2 :^(
好奇下econ係咪好straight要搵global optimal pt
因為ml好多都係搵local就算
yes, global and unique。
咁都幾係 而家好多ml都係minimize某個functional就算 :^(
因為ML好多係non-convex optimization :^(
但係econ應該都唔多convex?
但上面話Econ搵global and unique optimal point喎
唔strictly convex唔會有global and unique架喎 :^(
基本上係convex
Randomized choice係其中可以make sure constraint set係convex set一個手段
Optimization 其實學乜野 :^(
點optimize某objective subject to 唔同constraint (equality or inequality)
幾時有solution, 點計呀etc
深啲既有dynamic optimization, decision making over time etc.
like high school finding local maximum pt/minimum pt
Dynamic programming :^( :^( :^(
讀緊game theory,入面有好多simplex optimization,用手計計到頭暈 :^(
Agger 好煩nash bargaining solution :^(
Dynamic programming 已經好好做。
Behavioral econ 有啲咩multi-selves agent, dynamically inconsistent agent, 連dynamic programming 都唔apply,煩到嘔泡。
Nash bargaining 亦都係最簡單,有幾多relationship中的surplus只係按bargaining power分。
好在我唔係modeling個邊 :^(
optimization其實係好正既topic 我做緊machine learning research
Machine learning入面好多algorithm 都係solve optimization problems
當中會用到好多real analysis同functional analysis既techniques
最正個位係可以自己諗某啲algorithms去solve某一類optimization problems然後paper :^(
functional 同 real analysis 都好正 :^(
個post推慢左 :^(
放左advisor飛機 要補鑊做野 :^(
:^( :^( :^(
前日有個ug放左我飛機, 我屌到佢柒左
:^( :^( :^(
我趕唔切火車 :^(
下個星期再見佢 唔知會唔會被屌
個post推慢左 :^(
放左advisor飛機 要補鑊做野 :^(
:^( :^( :^(
前日有個ug放左我飛機, 我屌到佢柒左
:^( :^( :^(
我趕唔切火車 :^(
下個星期再見佢 唔知會唔會被屌
俾我係advisor都屌你 :^( :^(
個post推慢左 :^(
放左advisor飛機 要補鑊做野 :^(
:^( :^( :^(
前日有個ug放左我飛機, 我屌到佢柒左
:^( :^( :^(
我趕唔切火車 :^(
下個星期再見佢 唔知會唔會被屌
俾我係advisor都屌你 :^( :^(
做人公平d好 我都俾唔少prof放過飛機 :^(
放左advisor飛機 要補鑊做野 :^(
:^( :^( :^(
前日有個ug放左我飛機, 我屌到佢柒左
:^( :^( :^(
我趕唔切火車 :^(
下個星期再見佢 唔知會唔會被屌
俾我係advisor都屌你 :^( :^(
做人公平d好 我都俾唔少prof放過飛機 :^(
我個prof覆email好慢,成日約唔到時間 :^(
Optimization 其實學乜野 :^(
點optimize某objective subject to 唔同constraint (equality or inequality)
幾時有solution, 點計呀etc
深啲既有dynamic optimization, decision making over time etc.
like high school finding local maximum pt/minimum pt
Dynamic programming :^( :^( :^(
讀緊game theory,入面有好多simplex optimization,用手計計到頭暈 :^(
Agger 好煩nash bargaining solution :^(
Dynamic programming 已經好好做。
Behavioral econ 有啲咩multi-selves agent, dynamically inconsistent agent, 連dynamic programming 都唔apply,煩到嘔泡。
Nash bargaining 亦都係最簡單,有幾多relationship中的surplus只係按bargaining power分。
好在我唔係modeling個邊 :^(
optimization其實係好正既topic 我做緊machine learning research
Machine learning入面好多algorithm 都係solve optimization problems
當中會用到好多real analysis同functional analysis既techniques
最正個位係可以自己諗某啲algorithms去solve某一類optimization problems然後paper :^(
functional 同 real analysis 都好正 :^(
巴打講多啲QM有好多banach space,想知多啲functional analysis做啲咩 :^( :^(
Ads
Optimization 其實學乜野 :^(
點optimize某objective subject to 唔同constraint (equality or inequality)
幾時有solution, 點計呀etc
深啲既有dynamic optimization, decision making over time etc.
like high school finding local maximum pt/minimum pt
Dynamic programming :^( :^( :^(
讀緊game theory,入面有好多simplex optimization,用手計計到頭暈 :^(
Agger 好煩nash bargaining solution :^(
Dynamic programming 已經好好做。
Behavioral econ 有啲咩multi-selves agent, dynamically inconsistent agent, 連dynamic programming 都唔apply,煩到嘔泡。
Nash bargaining 亦都係最簡單,有幾多relationship中的surplus只係按bargaining power分。
好在我唔係modeling個邊 :^(
optimization其實係好正既topic 我做緊machine learning research
Machine learning入面好多algorithm 都係solve optimization problems
當中會用到好多real analysis同functional analysis既techniques
最正個位係可以自己諗某啲algorithms去solve某一類optimization problems然後paper :^(
functional 同 real analysis 都好正 :^(
所以其實app math都有正既地方 而且冇咁離地 :^(
Agger 好煩nash bargaining solution :^(
Dynamic programming 已經好好做。
Behavioral econ 有啲咩multi-selves agent, dynamically inconsistent agent, 連dynamic programming 都唔apply,煩到嘔泡。
Nash bargaining 亦都係最簡單,有幾多relationship中的surplus只係按bargaining power分。
好在我唔係modeling個邊 :^(
optimization其實係好正既topic 我做緊machine learning research
Machine learning入面好多algorithm 都係solve optimization problems
當中會用到好多real analysis同functional analysis既techniques
最正個位係可以自己諗某啲algorithms去solve某一類optimization problems然後paper :^(
functional 同 real analysis 都好正 :^(
巴打講多啲QM有好多banach space,想知多啲functional analysis做啲咩 :^( :^(
我d FA已經唔記得七七八八, 我更加唔識物理 :^(
某D Linear PDE可以用functional analysis的方法去deduce d property
e.g. compact operators
又可以用黎construct measures, e.g. Haar measure
同埋functional analysis本身會deal with d Banach / Hilbert spaces, 但係數學本身都會遇到呢D spaces, e.g. space of continuous functions, L^p spaces等等
probability都會見到, e.g. weak convergence
所以functional analysis算係analysis的基礎野又要準備溫書考qualifying :^( :^( :^( :^(
evolution 係我favorite